Glauber dynamics of neural network models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 213039
(http://iopscience.iop.org/0305-4470/21/13/527)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:21

Please note that terms and conditions apply.

CORRIGENDUM

Glauber dynamics of neural network models

Rieger H, Schreckenberg M and Zittarlz J 1988 J. Phys. A: Math. Gen. 21 L263-7
There were several printing errors in this letter.
On L263 in equation (1)

$$
\overline{\left\langle\alpha_{i}\left(t_{1}\right) \sigma\left(t_{2}\right)\right\rangle} \text { should be } \overline{\left\langle\sigma_{i}\left(t_{1}\right) \sigma_{i}\left(t_{2}\right)\right\rangle}
$$

On L263 in equation (2)

$$
\overline{\frac{\delta}{\delta h_{i}\left(t_{2}\right)}}\left\langle\sigma_{i}\left(t_{1}\right)\right\rangle \quad \text { should be } \overline{\frac{\delta}{\delta h_{i}\left(t_{2}\right)}\left\langle\sigma_{i}\left(t_{1}\right)\right\rangle}
$$

On L264 in the subscript in the last line of equation (4)

$$
z \sqrt{\alpha \tau} \text { should be } z \sqrt{\alpha r}
$$

On L265, line 14

$$
\int_{\tau_{1}>\tau_{2}} \alpha S\left(\tau_{1}-\tau_{2}\right) \sigma\left(\tau_{2}\right) \quad \text { should be } \quad \int_{t>t^{\prime}} \mathrm{d} t^{\prime} \alpha S\left(t-t^{\prime}\right) \sigma\left(t^{\prime}\right)
$$

On L265 in equation (11)

$$
\lambda J^{2} \int_{\tau_{1}, \tau_{2}} G\left(\tau_{1}-\tau_{2}\right) \ldots \text { should be } \lambda J^{2} \int_{\tau_{1}>\tau_{2}} G\left(\tau_{1}-\tau_{2}\right) \ldots
$$

On L265 in equation (12)

$$
\mathrm{e}^{\Gamma\left(t-t^{\prime}\right)} \text { should be } \mathrm{e}^{-\Gamma\left(t-t^{\prime}\right)}
$$

On L266 in equation (14)
$C(t) \approx \exp \{-\Gamma[(\pi-2) / \pi] t\} \quad$ should be $C(t) \approx \exp \left\{-\Gamma t[(\pi-2) / \pi]^{1 / 2}\right\}$.

