

Home Search Collections Journals About Contact us My IOPscience

Glauber dynamics of neural network models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 3039

(http://iopscience.iop.org/0305-4470/21/13/527)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:21

Please note that terms and conditions apply.

CORRIGENDUM

Glauber dynamics of neural network models

Rieger H, Schreckenberg M and Zittarlz J 1988 J. Phys. A: Math. Gen. 21 L263-7

There were several printing errors in this letter.

On L263 in equation (1)

$$\overline{\langle \alpha_i(t_1)\sigma(t_2)\rangle}$$
 should be $\overline{\langle \sigma_i(t_1)\sigma_i(t_2)\rangle}$.

On L263 in equation (2)

$$\frac{\delta}{\delta h_i(t_2)} \langle \sigma_i(t_1) \rangle \quad \text{should be} \quad \frac{\delta}{\delta h_i(t_2)} \langle \sigma_i(t_1) \rangle.$$

On L264 in the subscript in the last line of equation (4)

$$z\sqrt{\alpha\tau}$$
 should be $z\sqrt{\alpha r}$.

On L265, line 14

$$\int_{\tau_1 > \tau_2} \alpha S(\tau_1 - \tau_2) \sigma(\tau_2) \quad \text{should be} \quad \int_{t > t'} dt' \, \alpha S(t - t') \sigma(t').$$

On L265 in equation (11)

$$\lambda J^2 \int_{\tau_1, \tau_2} G(\tau_1 - \tau_2) \dots$$
 should be $\lambda J^2 \int_{\tau_1 > \tau_2} G(\tau_1 - \tau_2) \dots$

On L265 in equation (12)

$$e^{\Gamma(t-t')}$$
 should be $e^{-\Gamma(t-t')}$.

On L266 in equation (14)

$$C(t) \approx \exp\{-\Gamma[(\pi-2)/\pi]t\}$$
 should be $C(t) \approx \exp\{-\Gamma t[(\pi-2)/\pi]^{1/2}\}$.